Solving for $\mathrm{S}(\mathrm{t})$ and $\mathrm{E}[\mathrm{S}(\mathrm{t})]$ in Geometric Brownian Motion

Ophir Gottlieb

$$
3 / 19 / 2007
$$

1 Solving for $\mathrm{S}(\mathrm{t})$

Geometric Brownian Motion satisfies the familiar SDE:

$$
\begin{gather*}
d S(t)=S(t)[\mu d t+\sigma d W(t)] \tag{1}\\
S(0)=s \tag{2}
\end{gather*}
$$

In order to solve for $S(t)$ we will apply Ito to $d \ln S(t)$:

$$
\begin{gather*}
d \ln S(t)=\frac{1}{S(t)} d S(t)-\frac{1}{2} \frac{1}{S(t)^{2}} d S(t)^{2} \tag{3}\\
=\frac{1}{S(t)} S(t)[\mu d t+\sigma d W(t)]-\frac{1}{2} \frac{1}{S(t)^{2}} S(t)^{2}\left[\sigma^{2} d W(t)^{2}\right] \tag{4}\\
d \ln S(t)=\mu d t+\sigma d W(t)-\frac{1}{2} \sigma^{2} d t \tag{5}
\end{gather*}
$$

Then we integrate and apply the fundamental theorem of calculus to get:

$$
\begin{gather*}
\ln S(t)-\ln S(0)=\left(\mu-\frac{1}{2} \sigma^{2}\right) t+\sigma W(t) \tag{6}\\
S(t)=S(0) e^{\left(\mu-\frac{1}{2} \sigma^{2}\right) t+\sigma W(t)} \tag{7}
\end{gather*}
$$

2 Solving for $\mathrm{E}[\mathrm{S}(\mathrm{t})]$

We now take the expectation of the expression in equation (7):

$$
\begin{equation*}
\mathbb{E}[S(t)]=\mathbb{E}\left[S(0) e^{\left(\mu-\frac{1}{2} \sigma^{2}\right) t+\sigma W(t)}\right] \tag{8}
\end{equation*}
$$

Recall the general formula for the expected value of a Gaussian random variable:

$$
\begin{equation*}
\mathbb{E}\left[e^{X}\right]=\mathbb{E}\left[e^{\mu+\frac{1}{2} \sigma^{2}}\right] \tag{9}
\end{equation*}
$$

where X has the law of a normal random variable with mean μ and variance σ^{2}. We know that Brownian Motion $\sim N(0, \mathrm{t})$. Applying the rule to what we have in equation (8) and the fact that the stock price at time 0 (today) is known we get:

$$
\begin{gather*}
\mathbb{E}[S(t)]=S(0) e^{\left(\mu-\frac{1}{2} \sigma^{2}\right) t} \mathbb{E}\left[e^{\sigma W(t)}\right] \tag{10}\\
=S(0) e^{\left(\mu-\frac{1}{2} \sigma^{2}\right) t} e^{0+\frac{1}{2} \sigma^{2} t} \tag{11}\\
\mathbb{E}[S(t)]=S(0) e^{\mu t} \tag{12}
\end{gather*}
$$

