Deriving the Heat Kernel in 1 Dimension

Ophir Gottlieb

3/20/2007

1 Set Up - Shifting the Data

The general heat equation without a heat source is written as:

$$u_t(x,t) = k\Delta u(x,t) \tag{1}$$

Further, denoting the heat kernel G(x,t) we take the conditions:

$$G_t = k\Delta G \tag{2}$$

$$G(x,0) = \delta(x) \tag{3}$$

Where $\delta(\mathbf{x})$ has the following properties:

$$\int_{-\infty}^{\infty} \delta(x) dx = 1 \tag{4}$$

$$\delta(x) = 0, \ x \neq 0 \tag{5}$$

$$\delta(\alpha x) = \frac{1}{\alpha}\delta(x) \tag{6}$$

$$\int_{-\infty}^{\infty} \delta(x) f(x) dx = f(0) \tag{7}$$

Our goal is to find the Kernel G(x,t). We now write:

$$H(x,t) = \alpha G(\beta x, \gamma t) \tag{8}$$

With α , β , and γ to be determined. Now let's try to select the appropriate relationship between α , $\beta \gamma$ so that H and G satisfy the same equations. We have from equation (3) and (6) that:

$$H(x,0) = \alpha G(\beta x,0) = \alpha \delta(\beta x) = \frac{\alpha}{\beta} \delta(x)$$
(9)

Therefore if $\alpha = \beta$ then $H(x,0) = G(x,0) = \delta(x)$. We now want H(x,t) to satisfy equation (2).

$$H_t = \alpha \gamma G_t \tag{10}$$

$$H_{xx} = \alpha \beta^2 G_{xx} \tag{11}$$

Since we want H(x,t) to also satisfy equation (2) we have:

$$\alpha\gamma G_t = \alpha\beta^2 G_{xx} \tag{12}$$

And therefore $\gamma = \beta^2$. This together gives us that if $\alpha = \beta$ and $\gamma = \beta^2$, then H(x,t) and G(x,t) both satisfy the conditions for the heat kernel, and therefore by uniqueness of the heat kernel H(x,t) \equiv G(x,t). We have successfully found the requirements to correctly shift the data and can write:

$$G(x,t) = \alpha(G\beta x, \gamma t) \tag{13}$$

2 Solving for the Heat Kernel

Now we choose a clever value for γ and get:

$$\gamma = \frac{1}{t} \tag{14}$$

$$\alpha = \beta = \frac{1}{\sqrt{t}} \tag{15}$$

Now we write:

$$G(x,t) = \frac{1}{\sqrt{t}}G(\frac{x}{\sqrt{t}},1) = \frac{1}{\sqrt{t}}Q(\epsilon)$$
(16)

$$\epsilon = \frac{x}{\sqrt{t}} \tag{17}$$

We can now derive an ODE for $Q(\epsilon)$ using equation (2):

$$G_t = -\frac{1}{2}t^{-\frac{3}{2}}Q - \frac{1}{2}t^{-\frac{3}{2}}(t^{-\frac{1}{2}}x)Q'$$
(18)

$$= -\frac{1}{2}t^{-\frac{3}{2}}Q - \frac{1}{2}t^{-\frac{3}{2}}\epsilon Q' \tag{19}$$

$$G_t = -\frac{1}{2}t^{-\frac{3}{2}}(Q + \epsilon Q')$$
(20)

$$G_{xx} = t^{-\frac{3}{2}}Q'' \tag{21}$$

By equation (2) we get:

$$-\frac{1}{2}t^{-\frac{3}{2}}(Q+\epsilon Q') = kt^{-\frac{3}{2}}Q''$$
(22)

$$Q + \epsilon Q' + 2kQ'' = 0 \tag{23}$$

$$(\epsilon Q)' + 2kQ'' = 0 \tag{24}$$

Integrating we get:

$$\epsilon Q + 2kQ' = c \tag{25}$$

Now we note that we expect $G(\infty, t) = 0 \forall t$. Consequently we expect Q' = 0 as $x \to \infty$. Therefore c = 0. We then have the ODE:

$$\epsilon Q + 2kQ' = 0 \tag{26}$$

$$2kQ' = -\epsilon Q \tag{27}$$

$$Q' = -\frac{\epsilon Q}{2k} \tag{28}$$

$$\frac{Q'}{Q} = -\frac{\epsilon}{2k} \tag{29}$$

Integrating and simplifying we get:

$$\ln Q = -\frac{\epsilon^2}{4k} + C \tag{30}$$

$$Q(\epsilon) = C e^{-\frac{\epsilon^2}{4k}} \tag{31}$$

Substituting equation (16) for $Q(\epsilon)$ and equation (17) for ϵ we get:

$$G(x,t) = \frac{1}{\sqrt{t}} C e^{-\frac{x^2}{4kt}}$$
(32)

We know $G(x,0) = \delta(x)$ therefore:

$$\int_{-\infty}^{\infty} G(x,0)dx = 1 \tag{33}$$

and
$$\frac{d}{dt} \int_{-\infty}^{\infty} G(x,t) dx = k \int_{-\infty}^{\infty} G_{xx} dx = 0$$
 by the conservation of energy (34)

therefore
$$\int_{-\infty}^{\infty} G(x,t)dx = 1$$
 (35)

$$= \int_{-\infty}^{\infty} \frac{1}{\sqrt{t}} C e^{-\frac{x^2}{4kt}} dx \tag{36}$$

$$=\sqrt{4k}C\int_{-\infty}^{\infty}e^{-x^{2}}dx$$
(37)

$$=\sqrt{4k}C\sqrt{\pi} = 1\tag{38}$$

$$\Rightarrow C = \frac{1}{\sqrt{4k\pi}} \tag{39}$$

And finally:

$$G(x,t) = \frac{1}{\sqrt{4kt\pi}} e^{\frac{-x^2}{4kt}}$$
(40)