Deriving the Heat Kernel in 1 Dimension

Ophir Gottlieb
3/20/2007

1 Set Up - Shifting the Data

The general heat equation without a heat source is written as:

$$
\begin{equation*}
u_{t}(x, t)=k \Delta u(x, t) \tag{1}
\end{equation*}
$$

Further, denoting the heat kernel $G(x, t)$ we take the conditions:

$$
\begin{gather*}
G_{t}=k \Delta G \tag{2}\\
G(x, 0)=\delta(x) \tag{3}
\end{gather*}
$$

Where $\delta(\mathrm{x})$ has the following properties:

$$
\begin{gather*}
\int_{-\infty}^{\infty} \delta(x) d x=1 \tag{4}\\
\delta(x)=0, x \neq 0 \tag{5}\\
\delta(\alpha x)=\frac{1}{\alpha} \delta(x) \tag{6}\\
\int_{-\infty}^{\infty} \delta(x) f(x) d x=f(0) \tag{7}
\end{gather*}
$$

Our goal is to find the Kernel $\mathrm{G}(\mathrm{x}, \mathrm{t})$. We now write:

$$
\begin{equation*}
H(x, t)=\alpha G(\beta x, \gamma t) \tag{8}
\end{equation*}
$$

With α, β, and γ to be determined. Now let's try to select the appropriate relationship between $\alpha, \beta \gamma$ so that H and G satisfy the same equations. We have from equation (3) and (6) that:

$$
\begin{equation*}
H(x, 0)=\alpha G(\beta x, 0)=\alpha \delta(\beta x)=\frac{\alpha}{\beta} \delta(x) \tag{9}
\end{equation*}
$$

Therefore if $\alpha=\beta$ then $\mathrm{H}(\mathrm{x}, 0)=\mathrm{G}(\mathrm{x}, 0)=\delta(\mathrm{x})$. We now want $\mathrm{H}(\mathrm{x}, \mathrm{t})$ to satisfy equation (2).

$$
\begin{gather*}
H_{t}=\alpha \gamma G_{t} \tag{10}\\
H_{x x}=\alpha \beta^{2} G_{x x} \tag{11}
\end{gather*}
$$

Since we want $\mathrm{H}(\mathrm{x}, \mathrm{t})$ to also satisfy equation (2) we have:

$$
\begin{equation*}
\alpha \gamma G_{t}=\alpha \beta^{2} G_{x x} \tag{12}
\end{equation*}
$$

And therefore $\gamma=\beta^{2}$. This together gives us that if $\alpha=\beta$ and $\gamma=\beta^{2}$, then $\mathrm{H}(\mathrm{x}, \mathrm{t})$ and $\mathrm{G}(\mathrm{x}, \mathrm{t})$ both satisfy the conditions for the heat kernel, and therefore by uniqueness of the heat kernel $H(x, t) \equiv G(x, t)$. We have successfully found the requirements to correctly shift the data and can write:

$$
\begin{equation*}
G(x, t)=\alpha(G \beta x, \gamma t) \tag{13}
\end{equation*}
$$

2 Solving for the Heat Kernel

Now we choose a clever value for γ and get:

$$
\begin{gather*}
\gamma=\frac{1}{t} \tag{14}\\
\alpha=\beta=\frac{1}{\sqrt{t}} \tag{15}
\end{gather*}
$$

Now we write:

$$
\begin{gather*}
G(x, t)=\frac{1}{\sqrt{t}} G\left(\frac{x}{\sqrt{t}}, 1\right)=\frac{1}{\sqrt{t}} Q(\epsilon) \tag{16}\\
\epsilon=\frac{x}{\sqrt{t}} \tag{17}
\end{gather*}
$$

We can now derive an ODE for $\mathrm{Q}(\epsilon)$ using equation (2):

$$
\begin{equation*}
G_{t}=-\frac{1}{2} t^{-\frac{3}{2}} Q-\frac{1}{2} t^{t^{\frac{3}{2}}}\left(t^{-\frac{1}{2}} x\right) Q^{\prime} \tag{18}
\end{equation*}
$$

$$
\begin{gather*}
=-\frac{1}{2} t^{-\frac{3}{2}} Q-\frac{1}{2} t^{-\frac{3}{2}} \epsilon Q^{\prime} \tag{19}\\
G_{t}=-\frac{1}{2} t^{-\frac{3}{2}}\left(Q+\epsilon Q^{\prime}\right) \tag{20}\\
G_{x x}=t^{-\frac{3}{2}} Q^{\prime \prime} \tag{21}
\end{gather*}
$$

By equation (2) we get:

$$
\begin{gather*}
-\frac{1}{2} t^{-\frac{3}{2}}\left(Q+\epsilon Q^{\prime}\right)=k t^{-\frac{3}{2}} Q^{\prime \prime} \tag{22}\\
Q+\epsilon Q^{\prime}+2 k Q^{\prime \prime}=0 \tag{23}\\
(\epsilon Q)^{\prime}+2 k Q^{\prime \prime}=0 \tag{24}
\end{gather*}
$$

Integrating we get:

$$
\begin{equation*}
\epsilon Q+2 k Q^{\prime}=c \tag{25}
\end{equation*}
$$

Now we note that we expect $\mathrm{G}(\infty, \mathrm{t})=0 \forall \mathrm{t}$. Consequently we expect $\mathrm{Q}^{\prime}=0$ as $\mathrm{x} \rightarrow \infty$. Therefore $\mathrm{c}=0$. We then have the ODE:

$$
\begin{gather*}
\epsilon Q+2 k Q^{\prime}=0 \tag{26}\\
2 k Q^{\prime}=-\epsilon Q \tag{27}\\
Q^{\prime}=-\frac{\epsilon Q}{2 k} \tag{28}\\
\frac{Q^{\prime}}{Q}=-\frac{\epsilon}{2 k} \tag{29}
\end{gather*}
$$

Integrating and simplifying we get:

$$
\begin{gather*}
\ln Q=-\frac{\epsilon^{2}}{4 k}+C \tag{30}\\
Q(\epsilon)=C e^{-\frac{\epsilon^{2}}{4 k}} \tag{31}
\end{gather*}
$$

Substituting equation (16) for $\mathrm{Q}(\epsilon)$ and equation (17) for ϵ we get:

$$
\begin{equation*}
G(x, t)=\frac{1}{\sqrt{t}} C e^{-\frac{x^{2}}{4 k t}} \tag{32}
\end{equation*}
$$

We know $\mathrm{G}(\mathrm{x}, 0)=\delta(\mathrm{x})$ therefore:

$$
\begin{equation*}
\int_{-\infty}^{\infty} G(x, 0) d x=1 \tag{33}
\end{equation*}
$$

and $\frac{d}{d t} \int_{-\infty}^{\infty} G(x, t) d x=k \int_{-\infty}^{\infty} G_{x x} d x=0$ by the conservation of energy

$$
\begin{gather*}
\text { therefore } \int_{-\infty}^{\infty} G(x, t) d x=1 \tag{35}\\
=\int_{-\infty}^{\infty} \frac{1}{\sqrt{t}} C e^{-\frac{x^{2}}{4 k t}} d x \tag{36}\\
=\sqrt{4 k} C \int_{-\infty}^{\infty} e^{-x^{2}} d x \tag{37}\\
=\sqrt{4 k} C \sqrt{\pi}=1 \tag{38}\\
\Rightarrow C=\frac{1}{\sqrt{4 k \pi}} \tag{39}
\end{gather*}
$$

And finally:

$$
\begin{equation*}
G(x, t)=\frac{1}{\sqrt{4 k t \pi}} e^{\frac{-x^{2}}{4 k t}} \tag{40}
\end{equation*}
$$

