# Find an Explicit Solution for Delta in Black-Scholes 

Ophir Gottlieb

11/7/2007

## 1 Introduction

We have seen through the creation of a replicating portfolio that the delta required to hedge an European call option is simply $\frac{\partial C}{\partial S}$. Now we will explicitly compute delta by differentiating the closed form Black-Scholes Formula once with respect to the underlying stock.
We recall the Black-Scholes formula for an European call option today ( $t=0$ ) expiring at time $t=T$ with constant interest rate $(r)$, constant volatility $(\sigma)$ and strike price K as:

$$
\begin{gather*}
C=S \cdot \Phi\left(d_{1}\right)-e^{-r T} \cdot K \cdot \Phi\left(d_{2}\right)  \tag{1}\\
d_{1}=\frac{\ln \left(\frac{S}{K}\right)+\left(r+\frac{\sigma^{2}}{2}\right) T}{\sigma \sqrt{T}} \\
d_{2}=d_{1}-\sigma \sqrt{T}
\end{gather*}
$$

where $\Phi($.$) is the standard normal cumulative distribution. We will also$ write $\phi($.$) as the standard normal probability density.$

## 2 Finding $\frac{\partial C}{\partial S}$

First we note that by using the chain rule we find:

$$
\frac{\partial d_{1}}{\partial S}=\frac{\partial d_{2}}{\partial S}=\frac{1}{S} \cdot \frac{1}{\sigma \sqrt{T}}
$$

We can then differentiate equation (1) with respect to $S$ to find:

$$
\begin{equation*}
\frac{\partial C}{\partial S}=\Phi\left(d_{1}\right)+\frac{1}{S} \cdot \frac{1}{\sigma \sqrt{T}}\left[S \cdot \phi\left(d_{1}\right)-e^{-r T} \cdot K \cdot \phi\left(d_{2}\right)\right] \tag{2}
\end{equation*}
$$

We now make the claim that $\left[S \cdot \phi\left(d_{1}\right)-e^{-r T} \cdot K \cdot \phi\left(d_{2}\right)\right]=0$ and are thus are left with the result that $\Delta=\frac{\partial C}{\partial S}=\Phi\left(d_{1}\right)$.

## Proof:

Starting with a simple substitution for $d_{2}$ and then moving through the algebra:

$$
\begin{aligned}
& e^{-r T} \cdot K \cdot \phi\left(d_{2}\right)=e^{-r T} \cdot K \cdot \phi\left(d_{1}-\sigma \sqrt{T}\right) \\
& =e^{-r T} \cdot K \cdot \frac{1}{\sqrt{2 \pi}} \cdot e^{\frac{-\left(d_{1}-\sigma \sqrt{T}\right)^{2}}{2}} \\
& =e^{-r T} \cdot K \cdot \frac{1}{\sqrt{2 \pi}} \cdot e^{\frac{-d_{1}^{2}}{2}} \cdot e^{\frac{-\left(-2 d_{1} \sigma \sqrt{T}+\sigma^{2} T\right)}{2}} \\
& =e^{-r T} \cdot K \cdot \phi(d 1) \cdot e^{d_{1} \sigma \sqrt{T}} \cdot e^{-\sigma^{2} T} \\
& =K \cdot \phi(d 1) \cdot e^{-r T-\frac{\sigma^{2} T}{2}+\ln \left(\frac{S}{K}\right)+r T+\frac{\sigma^{2} T}{2}} \\
& \quad=K \cdot \phi(d 1) \cdot \frac{S}{K} \\
& e^{-r T} \cdot K \cdot \phi\left(d_{2}\right)=S \cdot \phi\left(d_{1}\right)
\end{aligned}
$$

Therefore, we have from equation (2) above that:

$$
\begin{gathered}
\frac{\partial C}{\partial S}=\Phi\left(d_{1}\right)+\frac{1}{S} \cdot \frac{1}{\sigma \sqrt{T}}\left[S \cdot \phi\left(d_{1}\right)-e^{-r T} \cdot K \cdot \phi\left(d_{2}\right)\right] \\
=\Phi\left(d_{1}\right)+\frac{1}{S} \cdot \frac{1}{\sigma \sqrt{T}}\left[S \cdot \phi\left(d_{1}\right)-S \cdot \phi\left(d_{1}\right)\right] \\
\frac{\partial C}{\partial S}=\Phi\left(d_{1}\right)
\end{gathered}
$$

And we have thus verified the well known property of Black-Scholes; namely that $\Delta=\frac{\partial C}{\partial S}=\Phi\left(d_{1}\right)$.

This in turn yields a nice interpretation of the first term in the Black-Scholes formula in equation (1). That is $S \cdot \Phi\left(d_{1}\right)$ is the value of the long position in the stock required to replicate the European call option. Note that $\Delta$ is a function, not a constant.

