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1 Introduction

We have seen through the creation of a replicating portfolio that the delta
required to hedge an European call option is simply %. Now we will explic-
itly compute delta by differentiating the closed form Black-Scholes Formula
once with respect to the underlying stock.

We recall the Black-Scholes formula for an European call option today (t=0)
expiring at time ¢ = T with constant interest rate (r), constant volatility
(o) and strike price K as:
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where ®(.) is the standard normal cumulative distribution. We will also
write ¢(.) as the standard normal probability density.
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First we note that by using the chain rule we find:
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We can then differentiate equation (1) with respect to S to find:
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We now make the claim that [S - ¢(d1) —e™"T - K - ¢(d2)] = 0 and are thus
are left with the result that A = g—g = ®(dy).
Proof:

Starting with a simple substitution for dy and then moving through the
algebra:
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Therefore, we have from equation (2) above that:
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And we have thus verified the well known property of Black-Scholes; namely

that A = 85 (dl)

This in turn yields a nice interpretation of the first term in the Black-Scholes
formula in equation (1). That is S - ®(d;) is the value of the long position
in the stock required to replicate the European call option. Note that A is

a function, not a constant.



